Required methods
This article describes the required methods in the Datafeed API. The library calls these methods to initialize the chart, resolve requested symbols, and load data for them. At the end of the article, you can find diagrams illustrating the sequence in which methods are called.
Refer to the How to connect data via Datafeed API tutorial that explains how to implement the methods step-by-step .
onReady
The library calls the onReady
method when the chart is initialized. This method supplies the library with the datafeed configuration data such as supported symbol types, exchanges, time intervals (resolution), currency codes and more. Call the OnReadyCallback
and pass a DatafeedConfiguration
object as a parameter:
onReady: (callback) => {
console.log('[onReady]: Method call');
setTimeout(() => callback(configurationData));
}
The following code sample shows the DatafeedConfiguration
implementation:
const configurationData = {
supports_search: true,
supports_group_request: false,
supports_marks: true,
supports_timescale_marks: true,
supports_time: true,
exchanges: [
{ value: "", name: "All Exchanges", desc: "" },
{ value: "NasdaqNM", name: "NasdaqNM", desc: "NasdaqNM" },
{ value: "NYSE", name: "NYSE", desc: "NYSE" }
],
symbols_types: [
{ name: "All types", value: "" },
{ name: "Stock", value: "stock" },
{ name: "Index", value: "index" }
],
supported_resolutions: ["D", "2D", "3D", "W", "3W", "M", "6M"]
}
searchSymbols
The library calls the searchSymbols
method to request symbols that match some user input. Pass the resulting array of symbols as a parameter to SearchSymbolsCallback
.
searchSymbols: async (
userInput,
exchange,
symbolType,
onResultReadyCallback,
) => {
console.log('[searchSymbols]: Method call');
const symbols = await getMatchingSymbolsFromBackend(userInput, exchange, symbolType);
onResultReadyCallback(newSymbols);
}
As a result, the library gets an array of SearchSymbolResultItem
objects that have the following format:
[
{
"symbol": "<short symbol name>",
"description": "<symbol description>",
"exchange": "<symbol exchange name>",
"ticker": "<symbol ticker name>",
"type": "stock" // "futures"/"crypto"/"forex"/"index"
},
{
//...
}
]
If no symbol is found, pass an empty array to SearchSymbolsCallback
.
You can adjust the frequency of search requests utilizing the symbol_search_request_delay
property.
resolveSymbol
The library calls the resolveSymbol
method to get symbol information such as the exchange, time zone, trading hours, etc. Specify this information in a LibrarySymbolInfo
object as demonstrated below:
const symbolInfo = {
ticker: 'BTCUSD',
name: 'BTCUSD',
description: 'Bitcoin/USD',
type: symbolItem.type,
session: '24x7',
timezone: 'Etc/UTC',
exchange: 'Example Exchange',
minmov: 1,
pricescale: 100,
has_intraday: false,
visible_plots_set: 'ohlcv',
has_weekly_and_monthly: false,
supported_resolutions: ['1', '5', '30', '60', '1D', '1W'],
volume_precision: 2,
data_status: 'streaming',
};
Pass symbol information as a parameter to ResolveCallback
. If the symbol cannot be resolved, call ErrorCallback
and specify an error message.
resolveSymbol: async (
symbolName,
onSymbolResolvedCallback,
onResolveErrorCallback,
extension
) => {
try {
const symbolInfo = await getSymbolInfoFromBackend(symbolName, extension);
onSymbolResolvedCallback(symbolInfo);
} catch (err) {
onResolveErrorCallback(err.message);
}
}
You can display the default TradingView icon when error occurs. To do this, specify the "unknown_symbol"
error message:
onResolveErrorCallback("unknown_symbol");
In this case, the chart shows the following icon and message.
If the icon is not displayed, make sure that the hide_image_invalid_symbol
featureset is not enabled.
getBars
The library calls getBars
to get historical data in a certain range. To transfer the requested data, pass an array of Bar
objects to HistoryCallback
.
The library caches historical data. Therefore, you do not need to implement a client-side cache.
Bar order
The array of Bar
items should be arranged in ascending chronological order, meaning that the timestamps of the bars should be getting bigger for each bar in the array. For example, [1484179200, 1484265600, 1484611200, ...]
.
Note that for daily, weekly, and monthly bars, the time
value should represent the beginning of the trading day at 00:00:00 UTC, not the beginning of the session.
Correct amount of data
The library calculates the amount of data that is necessary to fill the chart space and requests it in getBars
. You cannot change this amount. Return data to getBars
based on the following PeriodParams
properties:
from
— Unix timestamp of the leftmost requested bar. The library requires data in the[from, to)
time range.to
— Unix timestamp of the rightmost requested bar (not inclusive).countBack
— the required amount of bars to load.
It is more important to pass the required number of bars than to match the [from, to)
time range for the following reasons:
- The library might miscalculate the
from
value. It may happen if you provide incorrectsession
orsession_holidays
values. In this case, the[from, to)
range does not represent the required number of bars. - The library calculates the correct
from
value, but your backend does not contain enough bars in the[from, to)
range. It might happen if the market was opened, but the symbol was not traded.
In both cases, the library calls getBars
multiple times in order to get the missing data. It might cause potential issues. To avoid them, consider the following recommendations:
- Your response should always include all the existing data for the requested range.
- If the number of bars in the requested range is less than the
countBack
value, you should include earlier bars until thecountBack
count is reached. For example, the chart requests 300 bars in the range[2019-06-01T00:00:00..2020-01-01T00:00:00)
, and your backend have only 250 bars in the requested period. Return these 250 bars and 50 bars prior to2019-06-01T00:00:00
. - In the unlikely case that the number of bars in the requested range is larger than the
countBack
value, then you should return all the bars in that range instead of truncating it to thecountBack
length. - If there is no data left (in other words the current response to return an empty array, and there is no older data on the server), set
noData
totrue
to prevent further requests.
The library can request more bars than are visible because some indicators require additional history, for example, Moving Average with the length 10
.
Previously, it was necessary to specify noData
and nextTime
to load data outside the requested range. For now, you can send this data in response to the current request. However, you can still use these properties if your datafeed supports only the from
/to
properties and requires another request from the library.
The following piece of code is just a snippet to begin with. You will have to change it to fit your requirements but copying & pasting the code below should render candles on the chart for a given symbol and nothing for all other symbols. It is also to illustrate the noData: true
result.
resolveSymbol(symbolName, onSymbolResolvedCallback, onResolveErrorCallback, extension) {
setTimeout(
() => {
// Return some simple symbol information for the TEST symbol
if (symbolName === 'TEST') {
onSymbolResolvedCallback({
"name": "TEST",
"timezone": "America/New_York",
"minmov": 1,
"minmov2": 0,
"pointvalue": 1,
"session": "24x7",
"has_intraday": false,
"visible_plots_set": "c",
"description": "Test Symbol",
"type": "stock",
"supported_resolutions": [
"D"
],
"pricescale": 100,
"ticker": "TEST",
"exchange": "Test Exchange",
"has_daily": true,
"format": "price"
});
} else {
// Ignore all other symbols
onResolveErrorCallback('unknown_symbol');
}
},
50
);
}
getBars(symbolInfo, resolution, periodParams, onHistoryCallback, onErrorCallback) {
setTimeout(
() => {
// For this piece of code only we will only return bars for the TEST symbol
if (symbolInfo.ticker === 'TEST' && resolution === '1D') {
// We are constructing an array for `countBack` bars.
const bars = new Array(periodParams.countBack);
// For constructing the bars we are starting from the `to` time minus 1 day, and working backwards until we have `countBack` bars.
let time = new Date(periodParams.to * 1000);
time.setUTCHours(0);
time.setUTCMinutes(0);
time.setUTCMilliseconds(0);
time.setUTCDate(time.getUTCDate() - 1);
// Fake price.
let price = 100;
for (let i = periodParams.countBack - 1; i > -1; i--) {
bars[i] = {
open: price,
high: price,
low: price,
close: price,
time: time.getTime(),
}
// Working out a random value for changing the fake price.
const volatility = 0.1;
const x = Math.random() - 0.5;
const changePercent = 2 * volatility * x;
const changeAmount = price * changePercent;
price = price + changeAmount;
// Note that this simple "-1 day" logic only works because the TEST symbol has a 24x7 session.
// For a more complex session we would need to, for example, skip weekends.
time.setUTCDate(time.getUTCDate() - 1);
}
// Once all the bars (usually countBack is around 300 bars) the array of candles is returned to the library.
onHistoryCallback(bars);
} else {
// If no result, return an empty array and specify it to the library by changing the value of `noData` to true.
onHistoryCallback([], {
noData: true
});
}
},
50
);
}
}
subscribeBars
The library calls subscribeBars
to receive real-time updates for a symbol. Call SubscribeBarsCallback
every time you want to update the most recent bar or add a new one. For example, if the chart has loaded data up to 14:00, you can only update the last bar (14:00) or add a newer bar (15:00).
You cannot update a historical bar using this method. Otherwise, you get the putToCacheNewBar: time violation issue. If you need to change historical data, you should call onResetCacheNeededCallback
and then chart.resetData()
to redraw the chart.
If you return a bar that has the same time
value as the most recent bar, the library replaces the most recent bar with the new one.
Consider the following example. The most recent bar (in pseudo-code) is {time: 1419411578413, open: 10, high: 12, low: 9, close: 11}
.
You call onRealtimeCallback({time: 1419411578413, open: 10, high: 14, low: 9, close: 14})
. As the bar with the time 1419411578413
already exists, and it is the most recent one, the library replaces the entire bar making the most recent bar {time: 1419411578413, open: 10, high: 14, low: 9, close: 14}
.
Refer to the [tutorial][tutorial-subscribe-unsubscribe] to see the example of subscribeBars
implementation.
Multiple subscriptions
The library provides a unique subscriber ID as a parameter when it calls subscribeBars
and unsubscribeBars
. This subscriber ID allows you to track and manage subscriptions for symbol updates.
The library can have multiple subscriptions at the same time, for example, when a user switches to another symbol or resolution. You should handle subscribeBars
and unsubscribeBars
calls for different resolutions and symbols as independent events. Note that the library can call these methods in any order and with a delay.
When you receive an update from the server, you should send the data via the specific callback for the subscriber which has the correct symbol name and resolution.
If you send a subscriber data that does not match the subscriber's symbol and resolution, the putToCacheNewBar: time violation issue can occur.
Note that you should provide updates to all the subscriptions until the library unsubscribes from them. Therefore, you may require multiple connections to your backend server if you have multiple subscriptions.
Consider the following example. The current symbol is AAPL
, and the resolution is 1D
(one day). You switch the resolution to 5
(five minutes). The library separately calls subscribeBars
to subscribe for five-minute updates and unsubscribeBars
to unsubscribe from one-day updates (after a short delay). During this period, the library has at least two active subscribers: for five-minute and one-day updates. You should send five-minute updates to the five-minute subscriber and continue to send one-day updates to the one-day subscriber until the library unsubscribes from the 1D
resolution.
Assume that the last bar (in pseudo-code) is:
{time: 1684368000000, open: 10, high: 12, low: 9, close: 11}
on the one-day chart{time: 1684422300000, open: 10.5, high: 11.5, low: 10, close: 11}
on the five-minute chart
If the price jumps to 13
, you should send the following bars to the subscribers:
{time: 1684368000000, open: 10, high: 13, low: 9, close: 13}
to the one-day subscriber{time: 1684422300000, open: 10.5, high: 13, low: 10, close: 13}
to the five-minute subscriber
unsubscribeBars
The library calls unsubscribeBars
to stop receiving updates for the symbol when the user selects another symbol on the chart. The listenerGuid
argument contains the same object that was passed to subscribeBars
before.
Refer to the tutorial to see the example of unsubscribeBars
implementation.
Sequence diagrams
In this section, you can find diagrams illustrating the sequence of Datafeed API method calls. Expand the sections below to view the diagrams for the following cases: